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Ck varies as 4fk2 in three dimensions; for a maximum
wavenumber kmax 5 N/2, and for a cutoff wavenumber atWe propose a new algorithm belonging to the family of the sparse-

mode spectral method to simulate turbulent flows. In this method the end of the inertial range at kC 5 kmax/C, one finds that
the number of Fourier modes k increases with k more slowly than the ratio of the number of modes in the inertial range
kD21 in dimension D, while retaining the advantage of the fast Fourier N 3

I to the total number of modes N 3 scales like C23. For
transform. Examples of applications of the algorithm are given for

C varying from 2 to 10 according to how well resolved thethe one-dimensional Burgers’ equation and two-dimensional in-
flow is, between 87% and 99.9% of the modes are in thecompressible MHD flows. Q 1996 Academic Press, Inc.

dissipation range. For instance, for N 5 103 in each direc-
tion, or an ensemble of M 5 109 modes in three dimensions,

I. INTRODUCTION of the one billion modes carried out numerically, only
slightly more than one million belong to the inertial sub-

In experimenting with turbulent flows using a computer, range. If, as is generally the case, one is interested mostly
one is immediately faced with the enormous number of in this inertial subrange and in the early dissipation range,
modes to be taken into account. Bounds on this number the simulation becomes very inefficient. Hence the spur to
can be given on a basis akin to dimensional analysis of the find appropriate models for these overwhelming noniner-
Kolmogorov type [1], leading to a scaling in three dimen- tial modes.
sions, One possibility is to resort to more or less sophisticated

evaluations of transport coefficients, as for example in [2,
M p R9/4, (1) 3]. However, the number of such coefficients grows with

the growing complexity of the physical problem at hand,
and so does the degree of arbitrariness in interscalingassuming that the energy spectrum (defined below) follows
these coefficients.the Kolmogorov law E(k) p k25/3. Here, M 5 N 3 is the

In the same family of methods, although less physical atotal number of modes in dimension three needed to yield
priori is the method to introduce numerical dissipation bya correct description of the flow down to the dissipative
resorting to a hyperviscosity algorithm whereby (a) thescale lD 5 2f/kD with kD p R3/4, where R 5 U0L0/n is
dissipative Laplacian operator written in Fourier space k2the Reynolds number, U0 and L0 being the characteristic
is replaced by k2a with a . 0; and (b) the coefficient invelocity and scale of the flow, and n is the kinematic viscos-
front of this hyperLaplacian can be either constant or field-ity. N is the number of modes in each space direction.
dependent. These algorithms do ensure global positivenessHowever, most of those modes are in the dissipative range.
of the dissipation; but such is not the case locally, givingIndeed, let us define
rise to oscillations in the vicinity of sharp gradients. Local
positivity of the hyperviscous operator can be enforced [4]Ek 5 O

k[Ck

E(k) (2a)
but leads to a nonlinear viscosity which is more costly than
the linear case to compute and more difficult to interpret

Ck 5 hkuk # uku , k 1 1j (2b) since it can give rise to a power-law (as opposed to expo-
nentially decreasing) early dissipation range. A compari-
son of these algorithms in the case of two-dimensionalas the modal energy Ek in spherical k-shells Ck of unit

width constructed around the wavenumber k 1 1/2 with MHD has been performed in [5]; large-scale features of
the flow are well reproduced and, more surprisingly, theE(k) 5 Asv2

k the energy of an individual velocity Fourier
mode vk . The number of modes in individual Fourier shells location of small-scale dissipative layers as well. The latter
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can be understood when one realises that such layers are allowed to be nonzero only for a subset of the Fourier
modes.at the border of large-scale eddies which are treated accu-

rately. We propose here that for uku # n/2 all modes are re-
tained, for n/2 , uku # n only even modes are retained,Of a different nature are the sparse-mode algorithms.

Various sparse-mode schemes have been proposed [6–8] for n , uku # 2n only multiples of 4 are retained, and so
on. This subset can be represented by Ng embedded grids,in which only a subset of the a priori relevant Fourier

modes is kept. The idea is that with a properly chosen with 2Ng21 5 N/n; the grids are numbered from 0 to Ng 2
1, such that grid 0 includes the modes with uku # n/2, gridsubset, one can hope to have enough interactions among

triads of wavevectors to retain all the nonlinear effects and 1 includes only even modes with uku # n, grid 2 multiples
of 4 with uku , 2n, etc. Let us call Gj the subset of modesto qualitatively model turbulent flows at a much lower

cost. Such schemes rely on the fact that the conservation belonging to grid j.
Now suppose we want to compute the convolution prod-properties of quadratic invariants of the equations of mo-

tion also hold for truncated systems, in fact down to the uct of two functions a and b; ck 5 ol1m5k albm . This sum
can be decomposed in the following way:basic triad interactions (for the quadratically nonlinear

case) between three wavenumbers (k, p, q) such that k 5
p 1 q. These algorithms thus differ in how they reduce ck 5 O

l1m5k
albm 5 O

l1m5k,l,m[G0<G1

albm
the set of wavenumbers and, also, in how drastic a reduc-
tion they propose. The Lorenz model [9] is an extreme

1 O
l1m5k,l,m[G1<G2

albm 1 ? ? ?

(3)
case, with only three modes retained to describe the lack
of predictability of convective atmospheric flows. Widely
used, for example to study intermittency, are the shell- 1 O

l1m5k,l,m[GNg
22<GN

g
21

albm 2 O
l1m5k,l,m[G1

albm

models first proposed in [6], in which only one mode per
octave of wavenumber is kept.

2 ? ? ? 2 O
l1m5k,l,m[GN

g
22

albm .However, when going from a full regular grid to an
irregular set of wavenumbers, one loses the benefit of the
fast Fourier transform (FFT), and evaluation of the nonlin-
ear terms of the equations has to be done by explicit com- What makes this decomposition possible is that the modes

of grid j have nonlinear interactions only with modes ofputation of convolution products. If the space dimension
is D, and with N modes in each direction, a convolution grids j 2 1 and j 1 1. The sums preceded by a 2 sign

compensate for double counting of interactions amongproduct takes N 2D operations, while the spectral method
using FFTs takes only DND log2N operations. The gain modes common to two grids. Each term of this decomposi-

tion can be computed independently using a grid of sizedue to the FFT method is therefore ND/D log2N. For a
sparse method to be able to compete with a full spectral 2n for the terms preceded by a 1 sign, and a size n for

the others. Therefore, one FFT of size N is replaced bymethod, the number of retained modes must thus be very
small to compensate for this huge factor, and henceforth several FFTs of size 2n or n. For a number of grids Ng

larger than 2, there is a net economy in computation. Forthe representation of nonlinear interactions may become
too crude. instance, in dimension three, for N 5 1024 and n 5 128,

one finds that the sparse method is 25 times faster thanThe algorithm presented here is based on the same prin-
ciples as the other sparse-mode methods but manages to the full spectral method. Memory requirements are also

much lower (a 10243 simulation is barely feasible on pres-retain the advantage of the FFT. The method is described
in the next section. Its application to the Burgers’ equation ent-day computers).

All these partial sums must of course be dealiased foris dealt with in Section III, and the case of two-dimensional
MHD is treated in Section IV. Section V is the conclusion. the above decomposition to be meaningful. This can be

done by the usual method of taking a larger grid (by a
factor 3/2 for quadratic nonlinearities) to compute theII. THE METHOD
FFTs.

In the grid in which all Fourier modes are retained,The algorithm is explained for the case of one space
dimension, but its extension to several dimensions is this does not mean that for these modes the nonlinear

interactions are entirely correct, since some of them—instraightforward. Consider a periodic function a(x) of pe-
riod 2f defined on a grid of size N, where N is a power of particular close to the first cutoff k(1)

max—are missing,
namely those corresponding to couplings with the deleted2. In usual Fourier spectral methods (see, for instance, [10])

the function is represented by its N Fourier components ak , modes. However, in many applications, it is well known
that nonlinear transfer is mostly local in wavenumber; i.e.,where k is an integer going from kmin 5 2N/2 1 1 to

kmax 5 N/2. As in all sparse mode methods, ak here is it is dominated by triad interactions within which the ratio
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FIG 1. Velocity profile for the Burgers’ equation at t 5 1 for (a) the test run and (b) the sparse-mode run. Simulations with kmax 5 1024f, and
n 5 0.002.

of the largest to the smallest wavenumber is at most p4 are displayed in Figs. 3. From Figs. 1, one can see the
good agreement between the two computed values of the(see [11] for a recent analysis and review). The choice of

the wavenumber k(1)
max at which the first reduced grid is velocity field v(x, t). Note, however, the small oscillations

near the shock, due to a Gibbs phenomenon generated bybegun depends on how far down in wavenumber one wants
to retain all modes, i.e., on the problem at hand. In the the ‘‘holes’’ in Fourier space, where vk 5 0. Also, it is clear

from Figs. 2 that the spectra are almost identical for k ,MHD case described in Section IV, two choices of k(1)
max

are compared. k(1)
max(5128f), that is, for k belonging to grid 0. At k p 400

one detects a cusp in the sparse-mode spectrum due to the
absence of odd modes for k . k(1)

max . A second cusp atIII. APPLICATION TO THE BURGERS’ EQUATION
k 5 2k(1)

max is barely visible. Beyond k 5 k(1)
max , there is a

The sparse-mode method just described is now applied discrepancy in the two spectra. The exponential tail of the
to a one-dimensional case, the Burgers’ equation, spectrum due to viscous effects decreases faster in the

sparse-mode result than in the test run (Figs. 3). However,
the difference remains small and does not affect the low-­v

­t
5

­

­x
v2

2
1 n

­2v
­x2 , (4)

wavenumber part of the spectrum, which follows the ex-
pected power law Ek p k22 up to k p 100.

where n is the viscosity. We take for initial condition In the inertial domain, the two spectra are identical
v(x, 0) 5 2sin(fx) for 21 # x # 11 and n 5 0.002, with within three digits. This test is particularly severe because
kmax 5 1024f; the solution develops a shock at t 5 1/f. The in one dimension there is no smoothing effect due to angle
equation is integrated first by a standard Fourier spectral average, when computing an energy spectrum.
method using a grid N 5 2048 (test run); the same calcula-
tion is done using the sparse-mode method described

IV. TWO-DIMENSIONAL MHD FLOWSabove with n 5 256 and therefore Ng 5 4 grids (sparse
run); here, a conservative choice is made and the wavenum-

IV. 1. Equations
ber, until which all modes are kept (k(1)

max 5 128f p 400),
is already in the dissipation regime with this choice of vis- When more than one field variable is involved, does the

proposed algorithm reproduce correctly the interactionscosity.
Figures 1 show the velocity at time t 5 1, for the test between such fields? One may think of the coupling to a

temperature field (passive scalar), or the compressible case.run (a) and the sparse run (b), and Figs. 2 show in lin–log
coordinates the energy spectrum of the solution E(k, t) 5 Here we wish to address this problem in the context of

a conducting fluid following the MHD equations for theAsuvk(t)u2 at the same time, for the test run (a) and the sparse
run (b). Similarly, the energy spectra in log–log coordinates velocity and the magnetic field. In this case, it is known



SPARSE-MODE SPECTRAL METHOD FOR TURBULENT FLOWS 35

FIG. 2. Energy spectra at t 5 1 in lin–log coordinates for (a) the test run and (b) the sparse-mode run for the same simulations as in Fig. 1.

that the nonlinear interactions are partly nonlocal; a large- b 5 B/Ïer0, where B is the induction, e is the permeability
in empty space, and r0 is the uniform density; in a form thatscale quasi-uniform magnetic field gives rise to Alfvén

waves that propagate transversely along the field lines. brings out the similarity with the Navier–Stokes equations,
they readThis in turn diminishes the efficiency of the nonlinear inter-

actions, and the resultant energy spectrum E T(k) defined
below, in the absence of significant correlations between ­v

­t
1 v ? =v 5 2= SP 1

b2

2 D1 n=2v 1 b ? =b, (5a)the velocity and magnetic field, is shallower than in the
Navier–Stokes case [12, 13], namely E T(k) p k23/2.

The MHD equations are now given in the incompressible ­b
­t

1 v ? =b 5 b ? =v 1 h=2b, (5b)
limit for the velocity field v and for the Alfvén velocity

FIG. 3. Energy spectra at t 5 1 in log–log coordinates for (a) the test run and (b) the sparse-mode run for the same simulations as in Figs. 1
and 2.
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TABLE I
= ? v 5 0, (5c)

MHD Runs Described in This Paper, Together with the
= ? b 5 0, (5d) Viscosity n (with n 5 h), the Number of Grids Used Ng (Ng 5

1 Corresponding to Test Cases), and the Maximum Wavenumber
k(1)

max for Which the Full Span of Wavenumbers Are Employedwith the current density being defined as j 5 = 3 b; n is
the kinematic viscosity and h is the magnetic diffusivity;

Run n Ng k(1)
max Note

they will be taken equally in what follows (unit magnetic
Prandtl number); P is the pressure. 13—M1 0.0050 1 128 Fully aliased

1—M2 0.0050 3 32We shall now test the sparse-mode method on two-di-
2—M3 0.0050 4 16mensional MHD. A prototype of MHD flows in two dimen-

sions is the commonly studied Orszag–Tang vortex [14] 14—M4 0.0025 1 256 Fully aliased
4—M5 0.0025 3 64which takes as initial conditions expressed in terms of the
3—M6 0.0025 4 32stream function c with v 5 = 3 c and, equivalently, the
5—M7 0.0025 1 256magnetic potential A with b 5 = 3 A:

Note. The runs M1 and M4 are fully aliased; all other runs are de-
alised.c0 5 2(cos x 1 cos y),

A0 5 2 cos x 1 cos 2y;

through two types of criteria. On the one hand, using a
it corresponds to a magnetic neutral X-point embedded in best fit to the computed energy spectra in the form
a large-scale eddy and centered on the stagnation point of E(k, t) p C(t)k2m(t)e2b(t)k, the inverse of the logarithmic
the velocity. It yields to the development of several current decrement b gives a first estimate. On the other hand, one
sheets, the strongest one being at the center of the compu- can measure the width of the computed energy flux while
tational box [15–17] of length L0 5 2f. This flow, and it remains constant with wavenumber, a sign of quasi-
variants in which the velocity-magnetic field correlation inviscid nonlinear transfer to small scales; the flux is defined
coefficient is lower, has also been studied in the context as P(k) 5 ek

0 T(p) dp, where T(k) 5 v̂(k)­(0)
t v̂(k) 1 b̂(k)

of modeling small-scale flows with either a high power ­(0)
t b̂(k) is the nonlinear transfer of the total energy

of the Laplacian operator [5, 18] or with field-dependent
nonlinear transport coefficients [5]. In the former case, the

E T 5 E V 1 E M 5 As E (v2 1 b2)d2x 5 E E T(k) dkdissipation is not positive everywhere in space, leading to
oscillations near quasi-discontinuities. In the latter, the
extra nonlinear terms introduced by the modelisation of of Fourier spectrum E T(k). Note that the time derivatives

are meant to be taken in the nondissipative case, withsmall scales are costly, because they involve the computa-
tion of extra FFTs. Moreover, nonlinear eddy viscosities ­(0)

t meaning that both n and h have been set ; 0 in Eqs. (5).
We thus took two possible values for k(1)

max in the vicinitymay lead to a power-law dissipation range, which will inter-
fere with the inertial range; the empirical adjustment of of kD according to the above estimates, a choice less conser-

vative than the one made for the Burgers’ equation (seethe pseudo-viscosity coefficients is also more delicate.
Here we shall compare the results of seven runs, as listed Section III).

in Table I; Ng is the number of grids used (test runs are
IV. 2. Statistical Variableswith Ng 5 1), and k(1)

max is the wavenumber beyond which
the first modified grid begins (the maximum wavenumber In Figs. 4, we show the temporal variation of the total
of the computation when Ng 5 1). Test runs M1 and M4 enstrophy (left)
are not dealiased, whereas the test run M7 is computed
up to t 5 1.4 on a grid of 7682 points with the usual two-

VT 5 E k2E T(k) dk,thirds dealiasing rule, yielding kmax 5 256 as for runs
M4–M6.

In the computations to be described, the choice of with DT 5 2nVT the total dissipation in the flow (in the
case of a unit magnetic Prandtl number, as assumed here)k(1)

max was guided by the following considerations. It is
known [15–17] that in a well-resolved Orszag–Tang flow, and of the total energy (right) for runs M1 (solid line) and

M2 (dashed line). The total enstrophy is maximum at t pthe wavenumber at which one begins to feel dissipative
effects at a viscosity n 5 0.001 is at most kD p 40. Note 1.2, around which time dissipation sets in because of the

formation of small-scale structures in the form of vorticitythat, assuming a linear scaling with viscosity, this means
that for runs M1–M3, we should have kD p 10, whereas quadrupoles [19] and current sheets. Whether the limit,

for zero viscosity and magnetic diffusivity, of the dissipa-for runs M4–M7, kD p 20. This conclusion was reached
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1 and the Ng ? 1 runs, we should have D1 p 4, correspond-
ing to the average ratio of the number of points in the
shell centered on k(1)

max and in the shell next to it, an effect
superimposed to the local (intrinsic) variation of the energy
spectrum. For example, in run M6, this discrepancy is
largest at t p 1.15 (with D1 p 4.06) and lowest at t p 3.4
(with D1 p 1.73), with an average value around p3. The
fact that this average value is less than 4 shows that there
is backscattering, a phenomenon which is linked to the
issue of loss of predictability in turbulent flows, since the
small scales can act as an eddy-force for the large scales
through a beating mechanism. Let ma(k) be the actual
number of points in a given Fourier shell k, mt(k) the

FIG. 4. Temporal variation of the total enstrophy (left) and the total theoretical number of points in this shell (in two dimen-
energy (right) for two-dimensional MHD; test run M1 (solid line) and sions, mt(k) 5 2fk) and r(k) their ratio; it is clear that
sparse run M2 (dashed line). The nomenclature of runs is given in Table r(k(1)

max/r(k(1)
max 1 1) p 4, hence the problems visible onI. Note the close similarities between the two runs.

the spectra.
In Figs. 6 the energy spectra for runs M5 (a) and M7

(b) are displayed in log–log coordinates. The small gaps
tion D T is finite or not is an open problem of great interest at high wavenumber for the spectrum (6a) are due to the
in astrophysics, in particular in the context of solar flares fact that some of the unit-width shells defined in (2) are
and the heating of the solar corona, a problem that requires somewhat depleted. This effect is more strongly felt in run
huge numerical resolutions in view of the large Reynolds M6 (not shown) after the third cutoff (k . k(3)

max 5 128)
numbers to be considered [20] and for which the present for which only one mode in 64 is actually followed in time.
algorithm may be useful. We choose here to represent data in identical ways for

All these global quantities are very similar for both runs, multigrid runs and for test runs, so that this depletion is
including the enstrophies which stress the small-scale dy- clearly seen. On the other hand, four adjacent shells might
namics, with in particular a secondary maxima around t p in fact be added in plotting spectra in the first reduced
3.5 linked to reconnection processes of magnetic field lines grid, 16 shells in the next grid, etc. to avoid such holes; a
[15]. The time-scale of Alfvénic oscillations between ki- weighing algorithm taking into account the ratio of the
netic and magnetic energy (not shown) is also well repro- actual to the theoretical number of points 2fk in a two-
duced. Almost identical results obtain for run M3. A similar dimensional shell of mean radius k and width Dk 5 1 might
conclusion concerning averaged quantities can be drawn also be used.
when comparing the higher resolution runs M4–M7. The correlation between the velocity and magnetic field

However, a more detailed inspection of individual modal is defined as
energies E(k) as defined in Eqs. (2) alters somewhat this
conclusion. Figures 5 display for run M6 (a, c) and the test E C(x, y) 5 v(x, y) ? b(x, y).
run M4 (b, d) the temporal variation of E(k 5 20) (a, b)
and E(k 5 40) (c, d) on either side of the first grid cutoff Integrated over the whole domain, E C is an invariant of
k(1)

max 5 32. Whereas in the former case, little alteration the nondissipative (n 5 0, h 5 0) MHD equations. Its
due to the proximity of the onset of the first decimation Fourier spectrum is E C(k). We define as well the correla-
grid is visible, the effect of the decimation is strongly felt tion coefficient
in the latter, both in the overall temporal variation and in
the actual amplitudes of the modal energy. This is not r(x, y) 5 v(x, y) ? b(x, y)/(uv(x, y)u2 1 ub(x, y)u2). (6)
surprising, since for an equivalent dissipation of energy,
this dissipation occurs through a substantially smaller num- With this definition, it is bounded by 60.5, as, for example,
ber of modes which individually must be more efficient in when the flow consists of a pure spectrum of Alfvén waves
removing the energy coming from the inertial range at a v 5 6b; in this case the nonlinear terms of the MHD
rate « fixed by the initial conditions. equations are identically zero, as immediately seen in Eqs.

Let us define the discrepancy factor: (5). We plot in Figs. 7 at t 5 1.2 the fourth-order moment
of that spectrum, i.e., k4E C(k), in order to emphasize the

D1 5 E(k(1)
max)/E(k(1)

max 1 1). effect of small scales, for runs M7 (a) and M6 (b). No
serious discrepancy can be seen in such curves. However,
the Fourier spectrum r̂(k) of the correlation coefficientWith definition (2) of the shells unchanged for the Ng 5
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FIG. 5. Temporal variation of modal energies defined in (2) for (a, b) k 5 20 and (c, d) k 5 40 for the MHD runs M6 (a, c) for which k(1)
max 5

32, and the test run M4 (b, d).

(Figs. 7c for the test run M7, and 7d for run M6) is very sensi-
tive to the depletion in wavenumbers as we go from one grid
to the next; the effect is particularly conspicuous at k 5
k(1)

max . We checked that this was not a systematic effect; the
difference in the computed values of r̂(k) between the test
run and the multigrid run varying wildly around zero from
individual mode to individual mode within a given Fourier
shell (not shown). In fact, in the fully aliased run M4 a similar
error arises close to the cutoff wavenumber kmax 5 256. This
simply shows that this variable is very sensitive to the veloc-
ity and magnetic fields being close to zero. We should also
recall that it is expected both from analytical studies and
closure models of turbulence (see, for example, [21]) that
the spectrum of the correlation coefficient changes sign in
the vicinity of the dissipative wavenumber kD [22], once the
flow has reached the small scales. This would be a further
argument to set k(1)

max p kD .
In Figs. 8 probability distribution functions for the test

run M7 (a, c) and the sparse run M6 (b, d) at t 5 1.4 forFIG. 6. Total energy spectra at t 5 1.2 for the sparse run M5 (a) and
the derivatives ­yvx (a, b) and ­ybx (c, d) of the velocitythe test run M7 (b). Some shells are depleted for the multigrid run (see

text). and the magnetic field are displayed. Values on the x-
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1.2. Only the central window is displayed, centered on the
point (f, f). Whereas the stream functions for those three
runs look almost identical (not shown), the magnetic po-
tentials differ in an essential way locally; indeed a central
island, more visible in run M6, emerges in the multigrid
runs, corresponding to a cut of the contour line 21.10,
more significant than in the test run. In run M6, the island
is not drawn, since it has not reached the 21.10 level, but
the high at a level of 21.12 is indicated. In all three cases,
though, note that the minima are identical.

In Figs. 10 we show the full c (a, b) and A (c, d) fields
at a later time (t 5 4.0) for runs M4 (a, c) and M6 (b, d).
Again the stream functions are quite similar, but the central
magnetic island has grown to a sizable dimension in the
M6 run. However, the similarities in the two flows in most
of the box is at the origin of the good agreement found in
Figs. 4 for global energetic quantities. Note also the pres-
ence of a central eddy in the stream functions for both the
test run and the sparse run.

Figures 11 show the correlation coefficient defined in
Eq. (6) in the central window at time t 5 1.2 for runs M7
(a) and M6 (b). The sparse-mode run is noisy around the
zero level, as already discussed in the context of Figs. 7.
Whereas the correlation coefficient integrated over the
whole computational box is equal to 0.26 for runs M6 and
M7 at that time, we see from inspection of Figs. 11 that,
in the multigrid run, as well as in the test run, this average
(integrated) value is well below local values close to the
extrema of r at 60.5. Again, the multigrid run reproduces
that fact closely, of alternate regions in space where the

FIG. 7. Fourth moment of the correlation spectrum k4E C(k) (see velocity and magnetic fields are either parallel or anti-text for definition) at t 5 1.2 for the test run M7 (a) and the sparse run
parallel as for Alfvén waves. As noted before, such config-M5 (b).
urations lead to a substantial reduction of the nonlinear
dynamics of the MHD equations (5), a reduction that might
not have been thought of from the simple inspection of

axis are in arbitrary units. The dotted line represents the the averaged global value of the correlation coefficient r.
Gaussian distribution with the same dispersion. The fields Different computations with random initial conditions led
themselves have, both for the test run and the sparse-mode to the same conclusion; they also indicated that the regions
scheme, quasi-Gaussian profiles (not shown). This type of of space where r is within 610% of its minimum value,
diagnostic is useful to show the effect of the increased are sparse [5]. Hence a soft (weak) MHD turbulence in
intermittency of small scales, with strong exponential de- two dimensions, a result that may or may not extend in
partures in the wings of the distribution functions for the dimension three and is one important open problem in
small-scale data. This is yet another test of the decimation 3D. Furthermore, as is well known, the correlation between
algorithm which confirms its validity, in so far as it can the velocity and the magnetic field grows with time. At
reproduce accurately such departures from Gaussian pro- the maximum of the enstrophy (t 5 1.2), the correlation
files in the wings of the pdf of small-scale velocity and coefficient has grown by 4.43% in the aliased test run M4
magnetic fields. (and 4.42% in the dealiased one M7), whereas the growth

is 4.41% in the run M5 with three grids and 4.19% in the
IV. 3. Contours of Field Variables

run M6 with four grids. At t 5 4, the growth is 26.7% in
run M6 and 29.2% in run M4. This velocity-magnetic fieldWe now turn our comparison to an inspection of con-

tours in physical space. We again concentrate on the high correlation becomes more striking visually than at earlier
times, as can be seen in Figs. 10.resolution runs at a time close to the peak of the enstrophy.

In Figs. 9 we show the magnetic potential A for the test In Figs. 12, we show the current density j at t 5 1.2 for
runs M4 (a) and M6 (b). Contour intervals are every 10run M7 (a) and the sparse runs M5 (b) and M6 (c) at t 5
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FIG. 8. Probability densities at t 5 1.4 of the derivatives ­yvx (a, b) and ­ybx (c, d) of the velocity and the magnetic field for the MHD runs M7
(a, c) and M6 (b, d). The dotted line is a Gaussian fit to the data. Note the similar exponential wings for both runs.

for run M4 and twice that for run M6. All current filaments 63 (not shown). In the LES formulation, the data given
here would represent part of the generalized Reynolds-appear in the multigrid run, with decreased (by roughly

10%) central peaks. However, the decimation algorithm stress for the filtered fields.
produces oscillations around the 0-level that are absent in

IV. 4. Assessment of the Method in MHDthe well-resolved test run, a phenomenon that tends to be
emphasized by contour algorithms. As a conclusion, we can state that in the two-dimensional

Finally, Figs. 13 show a scatter plot of the xx-component MHD case, the multigrid algorithm behaves satisfactorily,
of the tensor pipj , where p 5 v 1 b; it can be viewed as a both for global temporal variations and for contours of the
generalized Reynolds-stress tensor. The test run M7 is in velocity and magnetic fields, including small-scale features.
abscissa (x), and the sparse-model run M6 is on the ordi- However, a closer inspection of data does reveal a de-
nate (y); (a) is the full data, and (b) is the data in which tailed difference concerning the precise way in which the
large scales have been filtered out; only wavenumbers central current sheet destabilises under the tearing mode.
larger or equal to the first grid cutoff k(1)

max 5 32 are retained. It is well known that this instability, corresponding to the
The lines drawn by least-square fit can be written as y 5 formation of magnetic islands better displayed in the mag-
fx 1 g with f 5 0.99997 (resp. f 5 0.894 for the filtered netic potential, is very sensitive to several factors—for
data), and g 5 5.0 1024 (resp. g 5 5.6 3 1024). This shows example, for different Reynolds numbers, or for identical
an excellent agreement between the total stress tensors. physical parameters but different time steps, or with the
However, comparison of the high-pass-filtered stresses addition of a small perturbation to the basic flow. All
(which are represented by a subgrid model in LES) shows contribute to differing results, such as the number of islands
some discrepancy, as expected. The two data set becomes appearing in the magnetic potential, or the time at which

they appear (reconnection time). The aspect ratio of thequasi-uncorrelated when the filtering is done above k 5
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FIG. 9. Contour lines of the magnetic potential at t 5 1.2 for the MHD runs M7 (a), M5 (b), and M6 (c). Only the window on the central
current sheet is represented.

sheet plays a role as well, and it may again be affected by dimensional MHD. Multigrid runs M5 and M6 require
the multigrid algorithm. Furthermore, the noise introduced respectively 4% and 10% of the memory needed by run
by the suppression of high-k modes in the sparse-mode M7, and 19% and 50% less CPU time than run M7. Larger
calculation is much higher than the usual truncation error gains should be expected in three dimensions. Moreover,
of direct spectral simulations and can trigger tearing insta- for three-dimensional problems for which the actual avail-
bilities sooner. Such discrepancies in the small-scales and able memory of computers is the direst need, the significant
the fact that such scales are noisy is also found in other gain in memory (larger than the corresponding gain in
LES methods for MHD. It is therefore not surprising that CPU) of the algorithm is particularly attractive.the precise reconnection process occurs differently for
multigrid runs. Although it may ultimately for much larger

V. CONCLUSIONresolutions also alter the global aspect of flows, in particu-
lar, if secondary peaks in the enstrophy (such as the one

We have developed a new algorithm which allows cuttingat t p 3.5; see Figs. 4a, b) become dominant, such is not
computational costs of spectral simulations of turbulentthe case in the study presented here. This point would

require substantially larger computing power to be settled. flows, while retaining an accurate description of the nonlin-
ear interactions in the inertial range. It makes use of aFinally, we should mention the savings in computing

power obtained when using the sparse-mode code in two- sparse Fourier mode representation of the fields in the
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FIG. 10. Contour lines of the stream function c (a, b) and the magnetic potential A (c, d) at t 5 4 for the MHD runs M4 (a, c) and M6 (b, d);
contour intervals are 0.1 for c and twice that for A.

dissipation subrange, but keeps the speed advantage of the Taylor Reynolds number, as defined, for example, by the
square of the computed ratio of integral to Taylor scales).FFT to compute convolution products. The method has

been tested in the one-dimensional case on the Burgers’ More recently, it was also shown both analytically and
numerically in the two-dimensional case that such methodsequation, and in the two-dimensional case in MHD, for

which resistive instabilities occur involving dissipative develop spurious rings in vorticity and circulation [23].
The method, using a Fourier decomposition and amodes. Contrasted to hyperviscosity methods, such as

those developed and tested in [4, 5] in 2D MHD as done pseudo-spectral algorithm, is limited to homogeneous
flows; this is to be contrasted, for example, to compact finitehere, the purpose and process whereby a simplified compu-

tation is performed are different; whereas here, the method differences [24] which, because of their high precision,
together with the possibility to easily implement them onis of a purely numerical nature, in the (linear or nonlinear)

hyperviscous case, an attempt at simulating physical dissi- parallel computers, are very versatile. Furthermore, the
method proposed here is not an alternative to standardpative processes is made, with two drawbacks: in the linear

case, oscillations develop, and in the nonlinear one, the large-eddy simulations using a subgrid model which are of
a more general character. Indeed, LES are not restrictedcost is high in CPU (although it does remain lower than

for a direct numerical simulation of equivalent effective to spectral computations, and their aim is the simulation of



SPARSE-MODE SPECTRAL METHOD FOR TURBULENT FLOWS 43

of turbulent viscosity. In our calculations small scales are
not necessarily isotropic, energy backscattering from small
to large scales is present and, furthermore, phase correla-
tions can exist between large and small wavenumbers. Dis-
sipation retains its original linear character, leaving the
nonlinear terms to produce in a self-consistent way the
transport coefficients, and it is everywhere positive, as op-
posed to nonlinear hyperviscosity methods. As a conse-
quence, coherent structures and intermittency are not sup-
pressed at small scales, as was shown in the two examples
given in this paper.

FIG. 11. Contour lines of the correlation coefficient between velocity
and magnetic field r(x, y) at t 5 1.2 (normalised between 60.5, see text)
for the MHD runs M7 (a) and M6 (b). Only the window on the central
current sheet is represented. Note the large spatial sectors within which
r(x, y) is close to its extrema, both in the large-scale structures and in
the small-scale central current sheet.

flows at much higher Reynolds numbers. Also, the subgrid
scales can include a large fraction of the inertial subrange.
We have not attempted to use our sparse-mode method
in such a case. Our objective is more limited. We simply
want to reduce the number of modes in the far dissipation
range but leave enough of those modes to retain the essen-
tial physics. The type of simulation we are interested in
could be coined as ‘‘almost a direct simulation,’’ although FIG. 12. Contour lines of the current density at t 5 1.2 for the MHD
this may be too optimistic. Indeed, we avoid most of the runs M4 (a) and M6 (b). Maxima in the central current sheet are within

15% of each other, but the multigrid run is more noisy in the small scales.drawbacks of the large-eddy simulations using some form
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